

Office of Cybersecurity, Energy Security, and Emergency Response

## **Cyber Labeling Research Initiative**

Presented by Animesh Pattanayak, PNNL

## Why Cyber Labeling Research?

- "U.S. Cyber Trust Mark" program initiated in 2023 to be led by FCC to "help Americans more easily choose smart devices that are safer and less vulnerable to cyberattacks."<sup>1</sup>
- DOE initiated research to develop a proof-of-concept for cybersecurity labeling for energy products to explore the best methods to present information about security features in energy products to inform consumer decisions.
- Focused on market-facing products: solar inverters and smart meters.
- Output: final research report detailing the results of the pilot and making recommendations to an expanded OT labeling program.

## **Overlap with SBOM**

- Emphasis on information disclosure and transparency
- Goal of promoting energy sector security
- Where else is there overlap?



## Who is involved?

- Funded by President Biden's Bipartisan Infrastructure Law, via DOE CESER<sup>2</sup>
- Led by a collaborative team of researchers from six National Laboratories (NREL, ORNL, SNL, INL, PNNL, LLNL)<sup>2</sup>
- Informed by feedback from five volunteer vendor partners with inverter and smart meter products
- In its proof-of-concept phase, the project will seek feedback from broader audiences (auditors, other vendors, the "general public", you)
- Final implementation decisions will be made by the FCC. If implemented, participation would be voluntary and available to energy sector vendors.

## **Process so far**

- Assessed 19+ standards/recognized research/legislation pertaining to labeling, privacy, and security for IoT and IIoT
  - Key takeaway: no existing standard or labeling regime adequately addresses privacy and security concerns applicable to energy sector ICS technologies such as smart meters and inverters.
- Consulted with policy and technology experts from 5 volunteer vendors, both in 1-1 interviews and group workshops
  - Key takeaway: any label for energy IIoT should be informational (displaying disclosures about security and privacy measures) rather than assessment or certification-based (displaying a rating or seal of approval), due to the contextdependent and highly variable nature of security in these environments.
- Produced an initial mockup of a label and associated data-request form, which will be used to run a pilot/proof of concept with vendor partners.

## **Building the Label Requirements**

- For each proposed data field, lab researchers answered the following questions:
  - How do we describe this element?
  - What types of data could fill this field?
  - What function does inclusion of this element fill?
  - Is it verifiable and/or immutable?
    - How could it be verified? By whom?
    - How do we address elements that are subject to change over time?
  - Is it applicable to smart meters and inverters?
  - Does it map to commonly used standards and best practices?
  - Who does the information provide value to?

## **Challenges with SBOM inclusion**

- Concerns about public SBOM disclosure
- Concerns about public interpretation of SBOMs
  - How to interpret relevance of vulnerability announcements, etc.
- Concerns about maintaining up-to-date, accurate information

### 21. Hardware Bill of Materials (HBOM)

Hardware Bill of Materials (HBOM) refers to a listing of the components (circuit boards, chips, etc.) within a hardware system.

|                                             | Yes                                                                                       | No |
|---------------------------------------------|-------------------------------------------------------------------------------------------|----|
| Do you maintain an HBOM for<br>this system? |                                                                                           |    |
| Is it available upon request?               | Addt'l text box will populate if                                                          |    |
|                                             | "Yes" is selected: To whom and<br>under what conditions may an<br>HBOM be made available? |    |

### 22. Software Bill of Materials (SBOM)

Software Bill of Materials (SBOM) refers to a listing of components (e.g. applications, libraries, files and folders) within a software package.



## Questions

- Can including SBOM in a cybersecurity label help promote acceptance of SBOM?
- How can we best include it?
- What challenges have you faced?
- Are there goals of SBOM that can be achieved through a cyber label or vice versa?

# Thank You

@DOE\_CESER

linkedin.com/company/office-of-cybersecurity-energysecurity-and-emergency-response

in

energy.gov/CESER



Office of Cybersecurity, Energy Security, and Emergency Response



## Visualizing Comparisons of Bills of Materials

February 2, 2024

Rebecca Jones Lucas Tate Funded by CESER



PNNL is operated by Battelle for the U.S. Department of Energy





## **Bills of Materials (BOMs)**

- What is in system?
  - All the objects for a piece of hardware or software
  - Includes how the objects are related
  - Metadata
    - ✓ Part Number
    - ✓ Vendor
    - ✓ Country of Origin
    - $\checkmark$  Version
- Required for all software sold to US
   Government
- No standard format





## **Comparing Bill of Materials**

## **Questions to Answer**

- How do different versions of a BOM compare?
- How do BOMs change over time?
- When there are multiple BOMs for a system, are they the same?
- How similar are the underlying systems of the same model and versions?
- How are classes of systems similar?
- How can we easily identify the differences between two BOMs?

## **Current Methods**

- Set comparisons
- Spreadsheets
- Tabular comparisons
- Side by side version comparisons

The methods don't account for relationships and can be difficult with large BOMs.

| PCB-2234-DEMO   |                    | ×A                    | ▼ PCB-2234-DE |
|-----------------|--------------------|-----------------------|---------------|
| Part Number F   | Reference Designat | ors 👻                 |               |
| Item PN         | Image              | Reference Designators | Item PN       |
| ELEC-001        | Alast.             | R1-5                  |               |
| ELEC-000        | 4                  | U1                    |               |
| SW-235974       |                    |                       | SW-235974     |
| 2001-10         | •                  | Ul                    | 2001-10       |
| Property        |                    |                       |               |
| Name            |                    | Value                 | Property      |
| Revision        |                    |                       | Revision      |
| Revision Number |                    |                       | Revision Nun  |

Image of OpenBOM comparison tool

### ns n comparisons **relationships and** s.

|       | × LATEST -                     |  |
|-------|--------------------------------|--|
|       | RESET COMPARE                  |  |
| Image | Reference Designators          |  |
|       |                                |  |
|       |                                |  |
| •     | U1                             |  |
| •     | U1                             |  |
| •     | U1 Show differences on Value   |  |
| •     | U1 Show differences on Value C |  |



3.7

## **BOMs as Graphs**

- Objects become nodes
- Relationships become edges
  - Physical connections
  - DLL calls
  - File structure
  - Package imports
- Metadata becomes attributes in graph



\*https://github.com/CycloneDX/bom-examples

|    | <b>{</b> ∉                    |
|----|-------------------------------|
|    | <pre>"bomEormat": "Cvcl</pre> |
|    | "specVension": "1             |
|    | "coniolNumbon", "             |
|    | seriaiwumber : u              |
|    | "version": 1,                 |
|    | "metadata": {                 |
| 7  | "component": {∉               |
|    | "bom-ref": "ac                |
|    | "name": "Acme                 |
| 10 | "version": "20                |
| 11 |                               |
| 10 |                               |
| 12 | ∬)<br>"comuicos"+ [/          |
| 10 | services : [*                 |
| 14 |                               |
| 15 | "bom-ref": "ap                |
| 16 | "name": "API G                |
| 17 | "version": "20                |
| 18 | "description":                |
| 19 | "data": [‹                    |
| 20 | <b>f</b> e                    |
| 21 | "clossific                    |
| 21 |                               |
| 22 | "+1ow": "b                    |
| 23 | } 🖉                           |
| 24 | <b>]</b> ,4                   |
| 25 | "services": [«                |
|    |                               |
| 27 | "bom-ref":                    |
| 28 | "name": "M                    |
| 29 | "vension"                     |
|    |                               |
|    | data : [*                     |
| 31 |                               |
| 32 | "class                        |
| 33 | "flow"                        |
| 34 | <mark>}</mark> ∉              |
| 35 |                               |
|    | 1.4                           |
| 37 | <b>33</b> .<br>{{∠_           |
| 20 |                               |
|    | "". "                         |
| 39 | name: M                       |
|    | "version":                    |
| 41 | "descripti                    |
| 42 | "data": [∢                    |
| 43 | { <i>€</i>                    |
| 44 | "class                        |
| 45 | "flow"                        |
|    |                               |
| 40 |                               |
| 40 |                               |
| 48 | <u>ک</u> ر ا                  |
| 49 | <b>]</b> ∉                    |
| 50 |                               |
| 51 | ],4                           |
| 52 | "dependencies": [«            |
| 53 |                               |
| 54 | "ref": "acme-a                |
| 55 | "dopondsOn":                  |
| 55 |                               |
|    | 4 L                           |
| 57 |                               |
| 58 | "ref": "api-ga                |
|    | "depends0n":                  |
|    | "ms-1.exampl                  |
| 61 | "ms-2.exampl                  |
| 62 | "ms-3.exampl                  |
| 63 | ]e                            |
| 64 | 14                            |
| 04 |                               |
| 65 | <u>ן</u>                      |
|    |                               |

```
neDX",
 n:uuid:3e671687-395b-41f5-a30f-a58921a69b79",
 e-application",
 loud Example",
 -gateway",
 "Example API Gateway",
ation": "PII",
 "ms-1.example.com",
 croservice 1",
 "2022-1",
ification": "PII",
  "bi-directional"
 "ms-2.example.com",
 croservice 2",
 "2022-1",
on": "Example Microservice",
ification": "PIFI",
oplication",
  'api-gateway" ]
teway",
 .com",
 .com",
  com"
```



## **Comparing Graphs**

How similar are two graphs? Where are the differences?

### **Methods**

- **Distance Methods**
- Spectral analysis
- Clustering Techniques
- **Deep Learning** •
- Node Correspondence

### **Gaps in Current Methods**

- Work on specific family of graphs
- Focus on graph structure
- Attributes

 $\mathbb{Z}$ 

- Global solutions
- Do not predict individual possible mappings
- End-to-end solution







3.7





**Method** 

- Based on Depth First Search
  - Linear time graph traversal
  - Parallelized
- Considers neighbors of a node as well as multiple attributes
- Incorporates record linkage
- Can predict non-exact matches





3.7

8



## **Supernodes**

- In large graphs, can be difficult to see differences, especially with overplotting
- Collapse leaf nodes of same neighbor into supernode
- Can spot differences more easily





Images of large SBOM compared with manually modified copy



## **SBOM Graph Comparison**

### CycloneDX open source SBOMs







Proton-bridge v.1.6.3

Proton-bridge v.1.8.0

### **Proton-bridge Combined**





## **HBOM Graph Comparison**







Version 2 of hardware



## Merged Graph – Blue indicates nodes in both



## Predicting Possible Node to Node Correspondence

- Reran algorithm on nodes that are not in both graphs using fuzzy matching (Jaro-Winkler)
- Overlay predicted edges (in green)
- Found differences that could be user error S/5







## Conclusion

- Created new end-to-end system to compare Bill of Materials
- Graph representation improved analysis compared to sets and lines of code
- Quick algorithm and collapsing supernodes accommodate large BOMs
- Interactive visualization allows for differences in BOMs to be quickly identified
- Were able to find locations of discrepancies in BOMs in hardware



- Compare multiple Bills of Materials at a time
- Consider directed graphs
- Account for types of edges/edge attributes
- Identify subgraphs of interest





## **Acknowledgements**

- The Department of Energy (DOE)
- The Cybersecurity Energy Security, and Emergency Response (CESER)
- The Cyber Testing and Resilience of Industrial Control Systems (CyTRICS) Program
  - Idaho National Laboratory (INL)
  - Lawrence Livermore National Laboratory (LLNL)
  - National Renewable Energy Laboratory (NREL)
  - Oakridge National Laboratory(ORNL)
  - Sandia National Laboratory (SNL)



5.7

7.94

# Thank you

