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What is an SBOM?
Nutrition Facts Label for Software

Software Bill of Materials

5 included components
Statically Linked Libraries 5             55%

libc v2.24              711 functions      43%
    gcc v6.3.0                60 functions        4%
    zlib v1.2.9                38 functions        2%
    pcre v8.44                28 functions        2%
    openssl v1.1.1d          27 functions        2%
               
    

Unidentified Code       45%

Filesize 1183 KB
Executable Code   

Shared Libraries 1
libzmq
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What is an SBOM?
File-level vs Package-level
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§ Primarily compiled binaries
— No source code (often firmware)
— No BOMs from vendors
— Custom file formats may be used

§ Often a large number of files
— Received as a compressed archive, filesystem image, or Windows installer 
— Windows configuration/support software (mix of native and .NET/CLR binaries)
— Embedded Linux device file systems
— No package manager metadata files

§ SBOMs need to have accurate information
— Relationships between files
— Support future analysis
• Do new CVEs apply?

The Need
SBOMs from software provided by vendors
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§ Depend on source code

§ Do not to establish links between files
— No relationships showing what is loading various shared libraries
— Unable to capture accurate install paths

§ Fail to identify software packages

§ Difficult to add support for new file formats
— Often depend on asking the developer to add support; provide sample files

§ Do not support custom SBOM output formats

Limitations of Existing Tools
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§ Shared libraries to load
— ELF, PE, and Mach-O
— .NET/CLR

§ Product name, vendor, and version information
— Windows PE, .NET/CLR, and MSI installers are particularly good

§ Embedded dependency lists for auditing
— Go, Rust, etc

§ Humans > AI for recognizing static linked libraries and overall package (for now)
— Generate an initial automated SBOM, supplement with manual analysis

Inspiration
Binary file formats contain a lot of metadata
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Our solution: Surfactant
High-level overview

§ Directory structures in
— Gather metadata from files
— Relationships from metadata

§ SBOM out
— Parent containers
— Shared libraries used
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§ Open Source! Available at https://github.com/LLNL/Surfactant
— pip install surfactant

§ Used to generate initial automated SBOMs
— Supplemented with manual analysis

§ Modular framework for SBOM generation
— Recognize new file types
— Extract interesting metadata for analysis
— Perform additional analysis on individual files
— Create additional relationships based on gathered metadata
— Output SBOM in a variety of formats
• CyTRICS, CSV, SPDX, CycloneDX, or custom

— Load SBOM data
• CyTRICS SBOM or custom formats (SPDX and CycloneDX in progress)

Our solution: Surfactant

https://github.com/LLNL/Surfactant
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§ Support additional file formats
— Docker containers
— Scripts (Python, JavaScript, Shell)

§ New analysis passes leveraging static analysis tools

§ Enable configuration options for plugins

§ UX improvements
— CLI for SBOM manipulation
— GUI to reduce command line knowledge required

§ Explore ML techniques that could be used to improve output
— Identify overall package names (e.g. binary is part of git)
— Identify statically linked libraries

Our solution: Surfactant
Future work
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Our solution: Surfactant
Inner workings
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What is an SBOM?
SBOM Formats
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Generating an SBOM
Automating file-level SBOM Generation Using Surfactant

File B

File A

File C File D

Us
es

Uses

Contains

Open Source, available at: https://github.com/LLNL/Surfactant
Or: pip install surfactant

https://github.com/LLNL/Surfactant
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Generating an SBOM
Challenges

• Code or 
Data?

• (Nested) 
Archives?

• Determining higher-level 
packages

• Tying packages to specific files

• Recognizing statically-linked or 
header-only libraries

• Limited (or no) metadata giving 
name, vendor, version info

• Determining dynamic run-time 
relationships

• Legality of analyzing binaries 
made by others?



SBOM Lessons Learned
5 years of generating and using BOMs for CyTRICS
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Hannah Pearson-Kleinheider
Idaho National Laboratory
(with many thanks to Robert Erbes for 80% of the slides)
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Generating BOMs
• There are many ways to make a BOM

− When and how it is compiled (downloads, updates, versions)
− How it is formatted and organized
− The details

• Function guides form
− CyTRICS focuses on supply chain illumination and vulnerability correlation
− What use case was any given BOM built for?

• The atomic unit of ‘software’ is squishy
− How deep do you go?
− Binary vs. Webapp vs. Mobile vs. Script



BOM Tools

• THE DREAM: Automated BOM generation

• THE REALITY: Functionality isn’t fully there yet
− Better suited for some use cases than others
− Does not have to be perfect to be useful

• Know what the tools you are using can and can not do
− Metrics and test cases for tool evaluation

• Custom tooling 
− Based on thorough understanding of objectives
− Consider generation, storage, querying, versioning, sharing, etc.



Using BOMs

• Not all BOMs are created equal
− The person (or program / company) behind the BOM
− Vendors rarely have a complete picture of the contents of their products
− Vendors frequently do not consider their own software in shared BOMs

• For vulnerability risk management and response, BOMs alone are not enough
− BOMs are the beginning, not the end
− Still requires understanding the context of your system and environment

• False negatives / positives
− Simplistic matching of identified software to CVEs is dangerous



Using BOMs Summary

• Generating BOMs
− Different use cases == Different BOMs

• Using BOMs is Hard
− Accuracy
− Completeness
− Relevance

• Usefulness vs. Compliance
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